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ABSTRACT 

In this paper  we develop some homological techniques to obtain fixed points 

for groups acting on finite Z-acyclic complexes. In particular we show tha t  

if a group G acts on a finite 2-dimensional acyclic simplicial complex D, 

then the fixed point set of G on D is either empty or acyclic. We supply 

some machinery for determining which of the two cases occurs. The  Fei t-  

Thompson Odd Order Theorem is used in obtaining this result. 

O. In t roduc t ion  

This paper is concerned with the action of a finite group O on a (abstract) 9n~te 

simplicial complex D. In [8], Oliver showed that the assumption that D is Z- 

acyclic does not restrict the homology H. (Da;  Z), where D a is the fixed point 

subcomplex of D, except when G has a very specialized structure (cf. [8]). One 

motivation to our paper is the question of whether assuming in addition that D 

has low dimension does restrict H.(DG; Z), in particular, what happens when 

D is two-dimensional? Recall that if D is a tree (i.e. one-dimensional acyclic 

complex) then D G is a (nonempty) tree. 

Another motivation to our paper is the question of whether one can define a 

broad enough class ~ of finite acyclic simplicial complexes having the property 
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that D <g> E ~D, for all g 6 G, whenever D E CD and G is a group acting on 

D. Note that Quillen's conjecture in [7] asserts that  if D is the order complex of 

the poser of nontrivial p-subgroups of a finite G, denoted by Sp(G), p a prime, 

then D G is contractible, provided D is contractible. One can prove (see [2]) that 

Quillen's conjecture follows from the implication ,.qp(g) is acyclic ~ Sp(G) 6 V. 

By taking the first barycentric subdivision of D, there is no loss of generality 

for our purposes to assume that G acts on D is such a way that if an element 

g E G fixes a simplex of D, it fixes all its vertices. In that event we call (D, G) 

an admiss ib le  pa i r  (see the precise definitions in section I below). Our chain 

complexes have eoe.~eients in Z. We prove: 

THEOREM 1: Assume (D,G) is an admissible pair with D 6ni~e. l i D  is ~wo- 

dimensional and acyclic, ~hen 

(1) D G is either empty or acyclic. 

(2) If  G is solvable, D G is acyclic. 

At the end of section 3 we give an example (see example 1) which was com- 

municated to us by 1%. Oliver, of a finite 2-dimensional acyelic complex such that  

A5 acts on it with no fixed points. We believe our example is the 2-skeleton of 

the so called 'Spherical dodecahedron space' (see, e.g. [9], p. 225) regarded as a 

CW-eomplex. Hence our Theorem 1 is at its best general form. We note that the 

Spherical Dodecahedron Space is a Poincare space (see [9], p. 225 for a defini- 

tion). It is possible that  other examples of fixed point free actions of finite groups 

on finite two-dimensional acyclic complexes are associated to Poincare spaces. 

However we believe that for most groups G acting on a finite two-dimensional 

acyelic complex D, D G is acyclic. Indeed Theorem (3.2) and Lemma (3.5) are 

useful in showing this. Lemma (3.6) illustrates how to use Theorem (3.2) and 

Lemma (3.5) to show that if G -- An, n >_ 6 acts on a 2-dimensional finite acyclie 

complex it fixes an acyclic subcomplex. 

The proof of Theorem 1 requires various results on group actions on simplicial 

complexes proved in section 2. Theorem (2.3) generalizes a well known result 

on acyclic covers; e.g. [4], p. 92 or [3] Lemma (4.4) and the references therein. 

Theorem (2.7) deals with the top homologies of D G, when (D, G) is an admissible 

pair and Theorem (2.4) gives a connection between H,(ma), H,(D) the order 
complex of the poser of all proper nontrivial subgroups of G, when (D, G) is an 

acyclic pair (definition in section 1). 



Vol. 82, 1993 GROUP ACTIONS 383 

We mention that there is still work to be done in determining precisely which 

groups G can act fixed point freely on finite two-dimensional acyclic complexes. 

Notice that Lemma (2.1) together with Theorem (3.4) reduce the question to the 

case when G is simple. Furthermore, we know of no example of a fixed point 

free action on finite 2-dimensional contractible complexes---our example is not 

contractible. 

We mention that the proof of Theorem 1 does not require the Classification 

Theorem of finite simple groups but only the Felt-Thompson Odd Order Theo- 

rem. 

1.  N o t a t i o n  a n d  p r e l i m i n a r i e s  

We begin by establishing our basic notation and definitions. Throughout D i~ 

a finite complex and G is a finite group. Given a group G, H < G means that 

H is a proper subgroup of G, while H _< G means that H is a subgroup of 

G (not necessarily proper). The same notation holds for sets, that is A C B 

means that A is proper in B and A C_. B means that A is a subset of B (not 

necessarily proper). Our simplicial complexes are abstract simplicial complexes as 

(for example) in [6], p. 15. All complexes in this paper are simplicial complexes. 

All homology groups in this paper are homology groups with coe~cients in 7.. A 

simplicial map 7~ : D -* L from a complex D to a complex L is a map of vertices 

such that {~(v0),...,~(vk)} is a simplex of L, for every k-simplex {v0,...,v~} 

of D. For a vertex v of D, write ~v for its image under ~ and for a simplex 

a = {v0,...,vk} of D, write ~a for the simplex {~v0,...,~vk}. We denote by 

~# : C(D) --* C(L) the chain map induced on the simpllcial chain complexes. We 

denote by 0 : C(D) --~ C(D) the boundary map. ~ is a simplicial isomorphism if 

is bijective on the vertices and ~-1 : L ~ D is a simplicial map. Write Aut(D) 

for the group of all simplicial automorphisms of D. 

Given a poser P, the order  complex of P is the simplicial complex whose 

simplices are finite chains. This complex will also be denoted here by P. We 

denote by P*, the dual poset. Given a complex D we always view the first 

barycentric subdivision of D, denoted by sd(D), as a poset with the simplices of 

D as vertices and inclusion the order relation. Given two posets P and Q recall 

that the join, P V Q, of P and Q is the poser whose vertex set is the disjoint 

union of P and Q and whose order relation on P (resp. Q) is the same as in P 

(resp. Q) and any member of Q is larger than any member of P. 
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ai en . group G write S(G) ~or posit (ann ora r of p op r 

nontrivial subgroups of G. 

Deiqnition: Let ~ be a collection ofnonempty sets, the nerve  of~' ,  N(~'), is the 

simplicial complex whose vertex set is .~" and whose simplices are those subsets 

a C_ ~ such that 0 # F,, = NFe,, F.  Let A be a set such that A C F,  for all 

F E .~'. Define N(.~', A) to be the subcomplex of N(~') whose vertex set is ~" 

and whose simplices are those simplices a E N(~') such that NF¢,, F properly 

contains A. Note that N(.F) = N(~', 0). | 

We record that 

(1.1): Let F be a collection of sets. Assume ¢ : F -~ F is a map such that for 

each F q .~, F C_ ¢(F). Let A be a set such that A C F, for all F E F. Then 

(1) ¢ :  N(Y, A) --, N ( ~ ,  A) is a simp~cial map. 

(2) ¢ ,  : H,(N(Jr, A)) ~ H,(N(~',A)) is the identity homomorphism. 

Proof." (1) is obvious. For (2) let i : ~" ~ .F be the identity map. Then for 

each simplex {F0,...,Fk} of N(F,A), {Fo,...,Fk,C(Fo),...,¢(Fk)} is a simplex 

of N(~', A), so by definition, ¢ and i are contiguous. By [6], p. 67, ¢ .  = i .  so 

(2) follows, m 

For completeness we recall the following definitions and result due to A. BjSr- 

her [4]. Let P be a poset. A subset R of P is ini t ial  if for every p E P there exists 

r E R, with r < p. R is jo in  cohe ren t  if whenever a subset T of R has an upper 

bound in P,  it has a join in P. Given an initial subset R of P define the complex 

@(P, R) on the vertex set R, by taking as simplices those finite nonempty subsets 

of R which have an upper bound. 

(1.2) (A. BjSrner [4], p. 93): Let R be a join coherent initial subset o f a  poset 

P. Then the order complex of P and ¢(P, R) have the same homotopy type. 

We thus define S~(G) = ~(S(G),S(G)) mad we observe that 

(1.3): S(G) and SI(G) have the same homotopy type. 

Proof." This is immediate from (1.2), since evidently R = S(G) is an initial set 

and if {Ho, ..., Hk} have an upper bound, then (Ho, ..., Hk) is its join. m 

We record the following two results 
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(1.4) (D. Quillen [7], p. 102): Let f , 9  : P ~ Q be maps of  posers such that 

f ( x )  <_ g(x), for alI x E P,  then If] and lgl are homotopic. 

(1.5): Let ~ : P ~ Q be a map of  posers and assume that /'or every p e Q, 

¢ - ' ( ( q  > q)) = {p ~ P : ¢(p) > q} is acyclic. Then P and q have the s ~ e  

homology. 

Proof." Since the proof is essentially the one given in [3], we give an outline of 

the proof. Define three acyclic carriers, as follows. Oq,p which assigns to each 

simplex of Q an acyclic subcomplex of P,  by Op, q(s)  = ¢-1((Q > rain(s))), 

where min(s) is the minimal element of s. Op which assigns to each simplex t of 

P an acyclie subcomplex of P by OF(t) = OQ,p(¢(t)) and OQ which assigns to 

each simplex s of Q the subcomplex (Q > rain(s)). Set f = ¢# : C(P) --~ C(Q) 

and let g : C(Q) --* C(p) be a chain map carried by Oq,p. Let i and j be the 

identity maps of P and Q respectively. The reader can verify that both i# and 

g o f are carried by 0p and both j #  and f o g are carried by 0Q. So by the 

gcyclic Carrier Theorem ([6], p. 74), ¢. : H . ( P )  --* H . (Q)  is an isomorphism. 
| 

We will also need the following fact 

(1.6): Assume D, L are finite-dimensionaJ complexes such that [ti( D ) = [-Ii( L ) 

= Oforal l i  <_ n a n d j  <_ m, n, m > - 1 .  Then~Ik (DVL)  = O, fora l l k  < n + m + 2  

and H,,+m+s(D V L) =/ t , ,+1 (D) ® H,,,+I(L). 

Proof: See e.g. [1]. | 

Finally recall that a cover  of a complex D is a collection of subeomplexes ~" 

of D such that each simplex of D is a simplex of some member F E 9 r. 

2. Some aspec t s  of  admiss ib le  ac t ion  

Definition: A pair (D, G) is all admiss ible  pair  if D is a complex, G < Aut(D) 

and for every simplex a = {v0,...,Vk} of D, if ga = a, then 9vi = vl, for all 

i = 0, ..., k. | 

Given an admissible pair (D, G) and H E S(G)  write D H for the full subcom- 

plex of D with vertex set the fixed point set of H on D. Denote Fix(D, G) = 

Fix(D) the subcomplex of D, whose vertex set is the set UH~S(G) DH and whose 



386 Y. SEGEV Isr. J. Math. 

simpliees are subsets a such that a is a simplex of D and a C D H , for some 

H e S(G).  

(2.1): Let H ,~ G. Assume 19 is a family of t~nite acyclic complexes such that for 

MID E 2), if  (D, X )  is an admissible pair, then D x E Z), for X = H and for 

X = G/H. Then, for ail D E :D, it" (D, G) is an admissible pair, then D ~ E 79. 

Proof: This follows immediately from the fact that D a = ( DH ) G [ H. I 

DeiJnition: An admissible pair (D, G) is p r o p e r  if D a C D H, for all H E S(G). 

(D, G) is acyel ie  if D n is acyelic, for all H E S(G). | 

(2.2): Let (D, G) be an admissible pair. Let Jr4 C S1(G) be a nonempty subset 

regarded as a full subcomplex emd assume that 

(1) For every simplex s of ,4,4, D G C D <s>. 

Let ~- = {D H : H E .A4) and Do = D G. Then .hi and N = N(J:,Do) have 

the same homotopy type. 

Proof.." Define ~b : sd(Ad) ~ sd (g )  and ¢ : sd (g )  ---* sd(.bt) as follows. For 

a simplex s of 2t4, ¢(s) = {O H : H e s} and for a simplex a of N,  ¢ (a )  = 

{H E .A4 : ARea F C DH). By hypothesis (1), a and ¢ are wen defined. Now 

if t C_ s are simplices of sd(.A4), then ¢(t) C_ ¢(s) and if r C_ a are simplices of 

sd (g ) ,  then ~b(r) C ¢(a) .  Further s C_ ¢ o ¢(s) and a C_ ¢ o ¢(a) .  Hence the 

lemma follows from (1.4). | 

Definition: Let Do be a subcomplex of a complex D. A rood  Do acycl ic  co v e r  

of D is a cover ~r of D such that Do C F,  for all F E ~ ,  each member of ~" is 

acyclic and for any nonempty subset a of ~', Fa = ARea F is acyclic, or Fa = Do. 

l 

(2.3) TItEOREM: Let Do be a subcomplex of the complex D. Let ~ be a mode 

Do acyclic cover of D. Set N = N(:F, Do). Then D has the same homology as 

the join N V Do. 

Proof." Let P = sd(D0), Q = sd(g) ,  R = sd(D) and J = Q v P*. Define a map 

f : R* ~ J ,  as follows: 

(1) If a is a simplex of Do, f (a)  = a. 

(2) Otherwise, f ( a )  = {F E N :  a is a simplex of F ) .  

We first show that f is order preserving. Let a, r be two simplices of D with 

>R- r ,  that  is a C_ 7.. Assume 7. is a simplex of O0, then f ( a )  = a C_ 7- = f(7.). 
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So f (a)  >j  f ( r ) .  Assume a is not a simplex of Do, then clearly f ( r )  C f (a)  

and again f (a)  >_j f ( r ) .  Finally if a is a simplex of Do and r is not, evidently 

> J  

We claim that for all j E J, Dj = f - l ( j ( >  j)) is acyclic so (1.5) completes 

the proof. Now if j is a simplex of Do, then Dj is just the set of all faces of j .  

I f j  is a simplex of N, then a simplex a of D is in Dj iff f (a)  >_j j ,  then either 

a is a simplex of Do, or a is not a simplex of D0 and a is a simplex of F,  for 

all F E j .  Thus Dj is the set of all simplices of D contained in AFej  F,  so by 

hypothesis it is acyclic. II 

As a corollary we have the following result 

(2.4) THEOREM: Let (D,G)  be a proper  acyclic pair. Assume S(G) # 0. Then 

Fix(D) has the same homology as the join S(G) V D a. 

Proof: Choose A4 = SI(G) in (2.2). Then as (D,G)  is proper, Ad satisfies 

hypothesis (2.2.1) so by (2.2), SI(G) has the stone homology as the complex 

N(:F, DO). Now Theorem (2.3) completes the proof. | 

Let (D, G) be an admissible pair. 

Notation: From now on we fix the letter n to denote the dimension of D. | 

Given a k-chain c E C~(D), the s u p p o r t  of c is the support of c written 

in terms of the canonical basis, i.e., the k-oriented simplices, for some fixed 

orientation. 

Assume H,,(D) = H,,_~(D) = 0. As 0 :  C,,(D) --* Cn-I(D) has trivial kernel, 

for every cycle z E Zn-~(D), there exists a unique chain c E Cn(D) such that 

z = O(c). We set c = O-l(z) and we define 

Definition: For a cycle z E Zn-~(D), the b o u n d i n g  n u m b e r  of z is ~i~=1 [nil, 
where O- l (z)  ,n | = E i = I  rtiO'i" 

We also define 

Detinition: The b o u n d i n g  s u p p o r t  of a cycle z E Z . -1  (D) is the support of 

the n-chain 0-1(z). | 

(2.5): Let (D, G) be an admissible pa/r. Assume that n > 2 and 

(1) H,(D) = H,-1(D) = O. 
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(2) For any cycle z 6 Z . - I ( D  G) there exists an (oriented) n-simplex a in the 

bounding support of z such that a is a simplex of D c. Then Hn(D G) = 

H._I(D G) = O. 

Proof: Clearly H,(D G) = O. Assume H,~_I(D G) # O. Let z 6 Zn-~(O a) be a 

cycle that  doesn' t  bound in C(DG). Choose z to have minimal bounding number. 

Let c = O-l(z). By hypothesis there exists an n-simplex a of D G such that  a is 

in the support  of c. We may assume without loss that  the coefficient of a in c is 

positive. Evidently z -  cO(a) is an ( n -  1)-cycle in C(D G) and O(c-a)  = z -  CO(a). 

Hence the bounding number of z - CO(a) is smaller then that  of z. By the choice 

of z, c - a is in C,(DG), hence c is, a contradiction. 

We will see in a minute that  if (D, G) is an admissible pair and H,(D) = 

H , - I (D)  = 0, then hypothesis (2) of (2.5) is satisfied. Before that  we need 

(2.6): Let (D, G) be an admissible pair with G cyclic of prime order p. Assume 

n >_ 2 and H.(D) = Hn-I(D) = O. Let z E Z.-,(D G) be a cycle such that there 

exists no n-simplex a in the bounding support of z such that a is a simplex of 

D G. Then z = pzl, for some cycle z, E Z , - I (D) .  

Proof." Set G = (g). Let [v0,. . . ,v,-1] be in the support  of z. Let c = 

O-l(z). Then the simplices in the support of c having [v0, ..., v,_1] as a face sum 

up in c in the following way: nl([V0,.. .  ,Vn_I,Wl] -1L [V0,... ,Vn--l,gW,] "+''" "[- 

[ , ,o ,  • • • ,  , , . - , ,  W l ]  + • • • ,  v , , _ , ,  + . . .  + [';o, • • • ,  v . - 1 ,  + . . .  + 

nk([v0 , . . . ,  v , - x ,  wk] + ' "  + [v0, . . . ,  v,_, ,  gP-'wk]). Hence the coefficient in z of 
n k [v0,. . .  , v . -1 ]  is ( - 1 )  PEi=I ni as asserted. II 

(2.7) THEOREM: Assume (n,  G) is an admissible pair  and [ t , (0 )  = [I,,-1 (n)  = 

O. Then _f-I,(D G) = ~ I . - l ( D  G)  = O. 

Proof: First note that  we may assume n >_ 2, since if n = 0,1, D is a tree in 

which case, as was mentioned above, D c is a tree. 

Assume the theorem holds when G is cyclic of prime order. Then using induc- 

tion, we see that  the theorem holds for any cyclic group G. Let z E Z,-I(DG).  

Then CO-I(z) E C, (D<9>) ,  for all g E G. Hence 0 - 1 ( Z )  6 C,(D a) as asserted. 

So Hn_I(D G) = 0. Obviously H,(D G) = O. 

Hence we may assume that  G is cyclic of prime order. We show that  (D, G) 

satisfies the hypotheses of (2.5). Assume false and let z E Z , - I ( D  a )  such that  

no simplex in the bounding support  of z lies in D G. Pick such z with minimal 
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bounding number. By (2.6), z = pzl, for some zl e Z,-~(DG).  Notice that 

the bounding number of z is p times the bounding number of zl. By the choice 

of z, there exists a simplex in the bounding support of zl which is a simplex 

of D a. But the bounding support of z equals the bounding support of zl, a 

contradiction. 

3. Two dimensional acyclic complexes 

In this section D is two-dimensional acyclic complex. Our ongoing hypothesis is 

that D is finite and G is finite. 

(3.1) THEOREM: Assume (D, G) is an admissible pair. Then 

(1) Hx(D a) = H2(D G) = O. 

(2) I£ G is solvable, D a is acyclic. 

Proof: (1) follows immediately from Theorem (2.7). For (2), using an obvious 

induction we may assume G is cyclic of prime order p. As is well known (see 

e.g. [5], chapter III), D a is Zp acyclic and in particular,/~r0(DC) = 0. Hence (2) 

follows from (1). | 

HYPOTHESIS A: Z C_ ~I(G) is a subset such that: 

(1) < Z > = G .  
(2) For any proper nonempty Z1 C Z,  < Zl  > < G. 

(3.2) THEOREM: Assume that ( D, G) is an admissible pair and that there exJsts 

a subset Z C_ 81(G) such that 

(1) Z satisfies Hypothesis A. 

(2) For any proper nonempty Z1 C Z,  D <zl> is acyclic. 

Then i f  [Z] > 2, D a is either empty or acyclic and i f  ]Z] > 3, D a is acyclic. 

Proo£" Let Z denote also the full subcomplex of ~ql(G), with vertex set Z.  

Assume that D G is not acyclic. Set ]Z[ = n + 2. Then the dimension of Z is 

n and/-)n(Z)  -~ Z, while/ ' )k(Z) = 0, for k # n. Let ~ = {D H : H e Z}  and 

L = UHez  DH" Notice that as D a C D <a> for each simplex a of Z,  (2.2) says 

that N ( ~ ,  D G) = N has the same homotopy type as Z. Since 9 v is a cover of L, 

Theorem (2.3) says that L has the same homology as the join N V D a that is 

(*) L has the same homology as Z V D a. 

If D ~ ¢ 0, then by (3.1), H0(D a)  ~ 0 and by (1.6), 

(**) gn+l(L)  ~: O. 
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Notice now that L is of dimension > 2 and L is a subcomplex of an acyclic 

complex of dimension two. Hence 

(***) Hk(L) = 0, for k > 1. 

As n _> 1, (**) and (***) contradict each other. 

Assume D a - ~ a n d n  > 2. By (*), L h a s  the same homology as Z so as 

Hn(Z) # O, (***) supplies a contradiction. | 

The next lemma shows that every finite (nonabelian) simple group G satisfies 

Hypothesis A, for some Z,  with IZI > 2. We use the Feit-Thompson Odd Order 

Theorem. 

(3.3): Assume G is a finite nonabelian simple group. Then there ex/sts a subset 

Z C_ SI(G) such that [Z[ > 2 and Z satisfies Hypothesis A. 

Proo~ Let Inv(G) be the set of involutions in G. As G is simple G = <  InvG >. 

Hence there exists a subset Z _ Inv(G) such that G = <  Z > and Z satisfies 

Hypothesis A2. Since G is simple, [Z[ > 2, and we are done. | 

(3.4) THEOREM: Assume (D, G) is an admissible pair such that G is fimte. Then 

D ° is e/ther empty or acyclic. 

Proof: Let G be a minimal counter example. By minimality of G, D H is acyclic, 

for all H 6 81 (G). Hence, by minimality of G, G is simple. By (3.3), G satisfies 

the hypotheses of (3.2) and hence by (3.2), D a is either empty or acyclic, a 

contradiction. | 

The following example shows that case D a = 0 of Theorem (3.4) can occur. 

Example 1: Let D be the two-dimensional simplicial complex on the vertex 

set V = {a, b, c, d, e, f}  U {1, 2, 3, 4, 5} U {(12), (13), (14), (15), (23), (24), (25), (34), 

(35), (45)} so that  lYl = 21. The (oriented) 2-simplices of D are as in Table I. 

| 
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a 

[a, 1, (15)] 

[a, 1, (12)1 
[a, 2, (12)1 
[a, 2, (23)1 

[a, 3, (23)] 
[a, 3, (34)] 
[a, 4, (34)1 
[a, 4, (45)1 
[a, 5, (45)] 
[a, 5, (15)l 

b 

[b, 1, (15)1 
[b, 1, (13)1 
[b, 2, (24)1 

[b, 2, (25)1 
[b, 3, (13)1 
[b, 3, (34)] 
[b, 4, (34)] 
[b, 4, (24)] 
[b, 5, (25)] 
[b, 5, (15)1 

Table I 

C 

[c, 1, (14)] [d, 
[c, 1, (13)1 [d, 

[c, 2, (23)1 [d, 
[c, 2, (25)1 [d, 
[c, 3, (13)1 [d, 
[c, 3, (23)] [d, 
[c, 4, (45)] [d, 

[c, 4, (14)1 [d, 

k, 5, (25)1 [d, 
[c, 5, (45)I [d, 

d 
1, (12)1 
1, (13)1 

2, (24)1 

2, (12)1 
3, (13)1 
3, (35)1 

4, (45)1 
4, (24)1 
5, (35)] 
5, (45)1 

e 

[e, 1, (15)1 
[e, 1, (14)1 

[e, 2, (24)1 

[% 2, (23)1 

[e, 3, (23)1 

[e, 3, (35)] 
[e, 4, (14)1 
[e, 4, (24)1 
[e, 5, (35)1 
[e, 5, (15)1 

f 

If, 1, (12)1 
If, 1, 04)1 
If, 2, (12)1 
If, 2, (25)1 
If, 3, (34)1 

If, 3, (35)] 
If, 4, (14)1 
If, 4, (34)] 
If, 5, (25)] 
If, 5, (35)] 

Further, every k-simplex is a face of a 2-simplex, for k = 0,1. This complex 

is obtained as follows: Let G = As act on {1,2,3,4,5}. Let X = G(5), the 

stabilizer in G of 5, Y = G({4,5}), the global stabilizer in G of {4, 5} and 

Z -- N v ( <  (12345) >), the normaiizer in G of < (12345) > .  so X ~- A4, Y - $3 

and Z ~- D10. We take as vertices all right cosets of H in G, where H E {X, Y, Z} 

and as (oriented) 2-simplices {[Zg,Xg, Yg] :g e G}. Every k-simplices is a face 

of a 2-simplex, for k = 0,1. Clearly G acts simplicially on this complex via right 

multiplication. 

We show this complex is acyclic. First note it has 21 vertices, 80 1-simplices 

and 60 2-simplices, so its Euler characteristic x(D) = 1. Next it is easily seen 

this complex is connected. Finally we sketch a proof that/ ' /1 (D) = 0. Denote by 

~rt,i, where t 6 {a, b, ..., f}  and i 6 {1, ..., 10}, the simplex in column t and row i 

of Table I. 

For t E {a, b, c, d, e, f )  set 

10 

C t ~ ~-~(--l)i+lo't,i. 

i=1 

First we note that to show that every 1-cycle bounds it suffices to show that 

every cycle of the form: 

(*) Iv0, vl] + Iv1, v2] + " "  + [vk-1, Vo] 
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bounds, where VOVl . . .  vk-lvo is a closed path in the graph of D. Next observe 

that  the distance from t to any vertex of D, in the graph of D is >_ 2, for all 

t E {a, . . . ,f}.  Hence it suffices to show that 1-cycles of the form 

(**) [ t , . l ]  + [v l , .~]  + [v~, ~1  + [ ~ ,  ~,l  + [~, ,t]  

bound, where tvlv2vsv4t is a closed path in the graph of D. Next it is not difficult 

to see that  to show that  cycles of the form (**) bound, it suffices to show that  

cycles of the form 

¢s $ $) [i,(ij)] + [(ij),j] + ~,t] + It, i] 

bound, where t E {a,b, ..., f} ,  i < j are in {1, ...,5} and t is not adjacent to ( i j )  

in the graph of D. Next note that G acts transitively on cycles of the form (***) 

so it suffices to show one of them bounds. We choose 

x = [1, (12)1 + [(12), 21 + [2, b] + [b, 11. 

Set 

= [b, 1, (15)1 - [b, 2, (25)1 + [b, 5, (25)1 - [b, e, (15)1 - c ,  + c ,  - c , .  

We leave it for the reader to verify that a(y) = x and the example is complete. 

(3.5): Assume (D ,G)  is an admissible pair. Let M C SI(G)  be a nonempty  

subset and consider the subcomplex of Sz(G) (also denoted by M) with vertex 

set M and simplices s C__ M such that D <'> # 0. Assume D H # ~, for all 

H 6 M .  Set L = UH6Jvl DN and ~r = {D n : H 6 M } .  Then 

(1) M and the nerve of ~ ,  N(Jc), have the same homotopy type. 

(2) M and L have the same homology. 

Proof'. The proof of (1) proceeds exactly as the proof of (2.2). For (2) note 

that .7= is a cover of L and that for each subset {Fil, Fi2,..., Fib } C .T', Nj=IFi i k  - is 

either empty or acyclic. Hence Theorem (2.3) completes the proof. | 

(3.6): Assume (D, G) is an admissible pair such that G ~ An, n > 6. Then D a 

is acyclic. 

Proof" Assume first that the lemma holds for n = 6. We proceed by induction 

on n. Let n > 6. We use Theorem (3.2) and we choose Z = {H1,/-/2, Hs, H,},  
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where HI = Alt{1, . . . ,n - 3},/ '/2 = <  (1,2, n - 2) >,/-/3 = <  (1,2, n - 1) > and 

/-/4 = <  (1 ,2 ,n)  >. Then Hijk = <  HI,Hj ,Hk >~" At , for some t < n and Hijk is 

contained in some subgroup of G isomorphic to A , -1 ,  so by induction hypothesis 

(2) of Theorem (3.2) is satisfied and the lemma follows. 

It remains to prove the lemma for n = 6. Assume D a = 0. We first show that 

(*) If H < G, with H ~ As, then D H = O. 

Assume H = Alt{1,... ,5} and O H ~ 0. Then using Theorem (3.2), with 

Hi =< (i, 5, 6) >, 1 < i < 4, we easily get a contradiction. Applying an outer 

automorphism we get (*). 

Now we can use (3.5). Let a = ( 1 2 ) ( 3 6 )  b = ( 1 2 ) ( 4 5 )  c = ( 1 2 ) ( 3 4 )  d = ( 2 5 ) ( 3 6 )  

e = (26)(35). Then [a, b] = [e, d] = 1 and ab = (36)(45) de = (23)(56). Further, 

lacl = [adl - -  [ebl = l ec l  - -  [be[ - -  Icdl = [dabl = Ibdel = 3 s o  < a , b , c  > ~  
< a ,b ,d  > N <  b,d,e >~-< c ,d ,e  >--- $4 and < a , e , d  > ~ <  b,e,e > 2  3 2 : 2. 

Moreover, < a, e >"~ D10 and < b, c, d > ~  As. Let 

.A4 = { < a > , < b > , < c > , < d > , < e > }  

regarded as a subeomplex of $1 (G) as in (3.5). Then using (*) it is easily verified 

that  H2(,~4) ~ 0, so by (3.5), H2(L) ~ 0, where L -- U H ¢ ~  DH. But L is a 

subcomplex of D, a contradiction. II 

(3.7): Assume G is isomorphic to an alternating group An, n > 6, or to a group 

o£ Lie-type and Lie-rank > 2, then G satisfies hypothesis A, for some Z C $1(G), 

with IZl _> 4. 

Proof." If G -~ An, n >_ 6, Pick Z = {< (123) >, < (124) >,  ..., < (12n) >}. So 

assume G is isomorphic to a group of Lie-type and Lie-rank _> 2. Let E be a 

root system for G and let II = ( a l , O / 2 ,  ...,an} be the simple system. For a E E, 

let Ua denote the root group of a. Then Z = {Ua : :t:a E II} has the required 

properties as for each a E -t-H, Z - {U~} is contained in a proper parabolic 

of G. | 
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